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ABSTRACT 

Let K be a hilbertian field, G(K) its absolute Galois group. If K is countable, 
then for a.a. 6. in G(Kf, N((6)) = (6.), C(6.) = (6") if e = 1, = (1) if e > 1 and 
there is no intermediate field KCM~Ks(6.)wi th  [Ks(6.):M]<~. Let 
6. E G(K)L Then for a.a. ? in G(K) t, (6.) A (?) = (1). 

Introduction 

We consider  a hilbertian field K and denote  by Ks its separable closure and by 

G ( K )  its absolute Galois  group,  i.e. the Galois  group of K in its separable 

closure. As  a compac t  group,  G ( K )  has then a unique normalized H a a r  measure  

/~. 

Jarden  studied in [3], [4], [5] the general  behaviour  of e lements  in G(K) .  We 

list here some of  the results he obtained,  K being a hilbertian field, e and f 

positive integers:  

THEOREM [3]. I[ K is countable, then for almost all 6- in G ( K f ,  Ks (6-) is 

PAC.  

Here  Ks (6-) denotes  the subfield of  Ks fixed by the e- tuple  6-. A field F is 

P A C  iff every absolutely irreducible variety defined over  F has an F-ra t ional  

point. No te  that the hypothesis  of countabil i ty cannot  be removed,  see [6]. 

THEOREM [4]. For almost all 6- in G(K) ' ,  for almost all ~ in G ( K f  : 

(1) (6-)---/~'e ((6-) denotes the closed subgroup generated by #;  Fe is the [ree 

profinite group on e generators). 

(2) The normalizer of (6-) in G ( K ) ,  N((6-)), has measure O. 

(3) I [ K  is a global field, then the centralizer of (6-) in G ( K ) ,  C(6-), is (tr) i[ 

e = 1, trivial i[ e >= 2. 
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(4) (6.) f3 (~) = (1). 

(5) (e = 1). There does not exist an intermediate field K C_ L • Ks (or) such that 

[Ks(w): L ] < ~ .  

In [4], Jarden asked several questions about the behaviour of 6.. Using a 

Galois group construction over hilbertian fields, we are able to answer them. 

Our results are the following, for K a hilbertian field: 

THEOREM 2.2. If  K is countable and e is a positive integer, then for almost all 6. 
in G ( K )  e, N((6.))= (6.). 

COROLLARY 2.3. I f  K, e are as above, then ]:or almost all 6. in G ( K )  e, 

C(6.) = (o~) if e = 1, 

=(1) i r e > 2 .  

THEOREM 2.5. I f  K is countable and e is a positive integer, then for almost all 5" 

in G ( K )  e, there is no intermediate field K C_ M ~ Ks (6.) with [Ks (6.): M] < oo. 

This result was obtained independently by Haran [2] for an arbitrary 

hilbertian field. As our proof uses a different method, we will give it in this 

paper. 
We are also able to answer by the affirmative Problem 7 in [4]. This leads us to 

a generalization of one of Jarden's results: 

THEOREM 2.8. Let e, f be positive integers, 6. in G ( K ) L  Then for almost all ~ in 

G ( K y ,  (d)  fl (~) = (1). 

I would like to thank Professor Macintyre for having called my attention to 

these problems, and Professor Jarden for his comments and for giving me a 

simple proof of Corollary 2.3. I would also like to thank the referee for his 

helpful suggestions. 

I. Preliminaries 

(1.1) Let K be a field. Then G ( K )  is a profinite group and hence is compact. 

There is therefore a unique way to define a Haar measure tt on G ( K )  so that 

~ ( G ( K ) ) =  1. If L is a finite separable extension of K, then /~ (G(L) )=  

[L : K] -1. We complete tt by adding to the measurable sets all the subsets of sets 

of measure 0 and denote this completion also by/z. For e a positive integer, we 

also denote b y / t  the power measure on G ( K ) L  

We will often use the following generalization of Lemma 4.1 of [4]: 
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LEMMA. Let K be a field, L a finite Galois extension of K. Suppose that ( M~)~<, 

is a sequence of finite Galois extensions of K, which contain L and are linearly 

disjoint over L. Let e >- 1, # in Gal(L/K)  e and for each i < to, let Ai be a nonempty 

subset of Gal(M~/K) e consisting of extensions of 6", and let At = 
{~ ~ G(K)e; '~ IM, E,4,}. If E,E~ [M, :L] -e =o% then/~([.JiE~A,)= [L :K]  -e. 

PROOF. W.l.o.g. we can suppose that # is the identity element of G ( L / K )  e, 

and thus that A~ is contained in G(L)  e. As ~(G(L)e )  = [ L : K ]  -e, the result 

follows by Lemma 4.1 of [4]. 

(1.2) K is called hilbertian if it has the following property: 

For every irreducible polynomial f(T, X )  in KIT, X], one can find infinitely 

many elements a in K such that f(a, X )  is irreducible in K[X]. 

Equivalently, one can replace T and X in the definition by sequences 

7"1 . . . . .  Tin, X~ . . . . .  X, (see [7]). Examples of hilbertian fields are: Q, Qab, any 

function field K(T) .  A finite extension of a hilbertian field is hilbertian. 

(1.3) One of the welt-known properties of hilbertian fields concerns solutions 

to embedding problems. 

Let K be a hilbertian field, L a finite Galois extension of K and 

p : G - - ~ G a I ( L / K )  an epimorphism of finite groups. Let 7 be a finite set of 

indeterminates; we then have a natural isomorphism between Gal(L/K)  and 

Gal(L( t ) /K( i ) ) .  

Suppose now that we can find a Galois extension M'  of K ( i )  which contains 

L( i ) ,  and a group isomorphism s : Gal(M'/K(t))--> G such that the following 

diagram commutes: 

GaI(M'/K(7)) 

s /  I resL(~) 
/ p 

G , GaI(L ( [)/K(i)) .  

Because K is hilbertian, we can then find a Galois extension M of K, which 

contains L, and a group isomorphism s : GaI(M/K)---~ G such that the following 

diagram commutes: 

GaI(M/K) 

resL 

P 
G , GaI(L/K). 
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(1.4) Let m be a positive integer and let Z,, be the cyclic group of order m. 

Let G be a finite group. We can then view the group-ring Z,n [G] as a G-module, 

the action of G on it being multiplication on the right. 0 will denote the identity 

element of the additive group Zm [G]; 1 will denote the unit of the ring Zm [G]. 

If A is a G-module, we can then form the semi-direct product A >~ G, where 

the universe is A x G, and the group law is defined by: 

(a, g)(b, h) = (a h + b, gh) 

for a, b in A, g, h in G (the group law in A is denoted additively; the group law 

in G is denoted multiplicatively; (0, 1) is the identity element of A >q G). 

(1.5) LEMMA [9, p. 91]. Let K be a hilbertian field and let L be a finite Galois 

extension with Galois group G. Let A be a finite G-module. One can then find a 

Galois extension M of K containing L such that the following diagram commutes: 

GaI(M/K)  

A ~ G > GaI (L /K)= G 

where s is a group isomorphism and p is the natural projection: p ( a , g ) =  g. 

(1.6) We will constantly use the following consequence of Lemma 1.5: 

COROLLARY. Let K be a hilbertian field, L C L ' two finite Galois extensions of 

K with GaI (L /K)=  G. Let m, l, n be integers. 

(1) There is a Galois extension M of K which contains L and is linearly disjoint 

from L' over L, such that the following diagram commutes: 

GaI(M/K)  

z/,~ ~ 1 resL 

P 

Zm [G]' >~ G , GaI(L/K)  

for some group isomorphism s. 

(2) There is a Galois extension M of K which is linearly disjoint from L over K, 

with GaI(M/K)  ~ S, (the permutation group on n letters). 

PROOF. (1) Let H = Gal(L' /K),  N = GaI(L'/L).  We then view Zm [G] ~ as an 

H-module, the action of H being induced by the epi resL : H---~ G. Note that N 
acts trivially on Zm[G] ~. By Lemma (1.5), we can therefore obtain Galois 
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extensions M'  and M such that the following diagram commutes:  

r e s  L , 

GaI(M'/K) = Zm [G] '  >~ H > H = GaI(L'/K) 

[ res,~ J resL 
res  L ,  

Gai(M/K) = Z,, [G] '  >~ G > G = Gal(L/K) 

M being the subfield of M'  fixed by the subgroup 0 >~ N of Z~ [G]  ~ >~ H ;  the 

horizontal maps are the natural projections on the second coordinate. 

As N = GaI(L'/L) acts trivially on Z , , [G]  ~, GaI(M'/L)= Z, , [G]t  x N, and 

thus L '  and M are linearly disjoint over L. 

(2) Let t~ . . . . .  t, be new indeterminates, let M'  be the splitting field over K ( t )  

of the equation X" + t~X "-~ + . . .  + t,. It is well known that GaI(M' /K(f ) )~  S,. 
M' and L ( [ )  are also linearly disjoint over K(t-). As K is hilbertian, we can 

therefore find an M satisfying the conclusion. 

II. Proof of the theorems 

(2.1) LEMMA. Let m, e be integers, m > 1; let G be a finite group and take 
gl . . . . .  g, in G. We then consider the group Zm [G] >~ G and the natural projection 

p : Zm[G] >~ G--> G. Let H be the subgroup of G generated by gl , . . .  ,g, ,  H '  the 

subgroup of Zm [G] >~ O generated by the elements (1, g~) . . . . .  (1, ge). Then 

p(N(H')) C_ H. 

PROOF. As H is a subgroup of G, we can look at the subgroup Zm [HI >~ H of 

Z,, [G] >~ G. We first note that H '  C Z,, [H] >~ H because Zm [H] >~ H contains 

the elements (1, gj) . . . . .  (1, g,). 

Suppose now that 

(a, h)- '(1, g0(a ,  h) = (b, g') E H' .  

We then get: 

(b, g') -- ( - ah-~g~h + h + a, h-lg~h ). 

Hence g'=h-lg~h and b =  - a g ' + h + a ,  i.e., ( h - b ) = a ( g ' - l ) .  

Let n be the order of g'. Then 

(h - b ) ( l +  g ' + - . .  + g'"-~) = a(g'" - 1 )  

= 0  

h ( l + g ' + . . . + g ' " - ' ) =  b ( l + g ' + - . . + g ' " - l ) .  
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As b • Z,, [H],  g'  ~ H and the left-hand side of the equation is non-zero, we 

must have: h E H. 

(2.2) THEOREM. Let K be a countable hilbertian field, let e >= 1. Then [or 

almost all ~r~ . . . . .  or, in G ( K )  ~ we have N((o't . . . . .  o',)) = (crl . . . .  , ~e). 

PROOF. For each finite Galois extension L of K, let 

TL = {fir E G ( K )  ~ ; there is M D L finite Galois over K such that 

resL (N((OlM))) C_ (firlL)}. 

We claim that /z(TL) = 1. Let ? ~ G ( L / K )  e. By (1.6) and Lemma 2.1, we can 

then find a finite Galois extension M~ of K containing L, and O, in GaI(MdK)"  

such that 

(1) fir, IL = ?, 

(2) resL (N((#,))) C_ (~). 

We now use repeatedly (1.6) and (2.1') to obtain a sequence Mi, i < to of finite 

Galois extensions of K containing L and Oi in GaI(M~/K)" such that: 

(1) fir, 
(2) resL (N((fir,)))C_ (q). 

(3) M, is linearly independent of M I . - .  M,_, over L. 

(4) [M, : L]  = [M, :L] .  

The fields M~ are therefore linearly independent over L, and by Lemma 1.1, 

the set {fir E G(K)"  ; # I M, = #i for some i < to} has therefore measure [L : K]-L 

The union of all these sets for q ranging over Gal(L /K)"  has therefore measure 

1; clearly it is contained in TL and therefore p.(TL)-- 1. 

Let T = N TL where L ranges over all finite Galois extensions of K. As K is 

countable, p . ( T ) =  1. If fir is an element of T, we claim that N ( ( # ) ) =  (0).  

Otherwise, let ~" E N((~)) ,  ~'~ (0).  Then for some finite Galois extension L of 

K, z [ ~ ( a  [L). As ~ ~ T~, we reach a contradiction. 

Let  K be countable hilbertian, let e >- 1. Then for almost all 

C(fir) = (o') if e = 1 

=(1)  i f e >  l.  

PROOF. By 2.2, we know that for almost all # in G ( K )  e, N((fir))= ((~). As 

C(fir)C N((#)) ,  we get C(fir) C_ (fir) for a.a. fir in G(K) ' .  

If e = 1, then clearly C(¢r)= (a) .  

If e > 1, then by a result of Jarden, for a.a. fir in G ( K )  e, (d') -='- F,. But the 

(2.3) COROLLARY. 

fir in G ( K )  e, 
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center of F, is trivial for e --- 2 (see [4]). Hence for almost all # in G(K) ' ,  for 

e >- 2,  C ( ( 6 . ) )  = (1) .  

(2.4) LEMMA. Let m, e be integers, m > 1, e => 1; let G be a finite group and 

take g~ . . . . .  g, in G. We now consider the group Z,, [G] >4 G. Let H be the 

subgroup of G generated by gt . . . . .  g,, H '  the subgroup of Z,~ [G] ~ G generated 

by ( l ,gt)  . . . . .  (1,g,). Then for all g in O \ H ,  for all a in Zm[G], 

[((a, g), H ' ) :  H']  > [(g, H ) :  H]. 

PROOF. As in Lemma 2.1, we can prove that H '  is contained in the subgroup 

Z, , [H]  ~ H of Z , , [ G I ~  G. 

Let n be the order of gt. Then 

(1, g,)" = (1 + g, + . . .  + g~'-', 1). 

(a, g)-'(1, g,)"(a, g) = ((1 + g, + . . .  + g~-t)g, 1). 

Thus (a, g)-~(1, gt)°(a, g) is an element of ((a, g), H')  but does not belong to 

Z,. [H] ~ H because g ~  H. Pick elements (ai, hi), i = 1 . . . . .  r in ((a, g), H ' )  such 

that the elements hi form a set of coset representatives of H in (g,H),  

(at, h , )=(0 ,1) .  Then the eosets ( a ,  h~)Zm [H] >~ H, i = 1  . . . . .  r and 

(a, g)-'(1, gt)"(a, g)Z,, [H] >a H are distinct; as H '  is contained in Z,. [HI >~ H, 
this gives us [((a, g), H') : H'] > r = [(g, H ) :  HI.  

(2.5) THEOREM. Let K be countable hilbertian, let e > 1. Then for almost all £r 

in G(K)  e, if M is a proper subfield of Ks (6") containing K, then [Ks (6.) : M] is 

infinite. 

PROOF. For each finite Galois extension L of K, let 

TL = {# E G ( K )  ~ ; there is M D L finite Galois over K such 

that for all r in GaI(M/K) ,  either 

r i L E ( f i l L )  or 

[Ca r,,. • r,,.,>: (6. r,,.,>] > [ca [,_, .r r,.>: <o- r,.)]}. 

Then ~ ( T L ) =  1. The proof is similar to the one given in Theorem 2.2. It uses 
Lemma 2.4 instead of Lemma 2.1. 

Let T =  I")TL where L ranges over all finite Galois extensions of K;  

p.(T) = 1; let ,~ be an element of T and let T E G ( K ) ,  a-~ (#). We can then find 

a finite Galois extension M of K such that r rM~(#  tM). Using the fact that 

tYE f') TL, we can therefore find a sequence of finite Galois extensions of K, M ,  

i < to which contain M and satisfy: 

(1) M, C M,+,. 
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(2) [ (~ rM,, r rM,). (~  r~,)] < [(~- r~ .... ,J- rM,..): (~- r~..,)]. 
The re fo r e  [(~, ~'): (d) ]  is infinite. 

(2.6) LEMMA. Let G be a finite group, let f be a positive integer, ! >= f2 r~l. Then 

for all a, . . . . .  al in Z2[G]', we can find G-submodules N,, 5I,_ of Z_,[G] t, such that 

(1) Z2[G]'  = N, • N2, 

(2) a, . . . . .  ar ~ N,, 
(3) N2 is a free Z,.[G]-module of rank >= l - f 2  I°l. 

PROOF. We use induction on f. For  f = 1 let a = a,.  Let  {el . . . . .  e,} be a basis 

of Z_,[G] ~, and write a as (bt . . . . .  b,) with respect  to the basis {e~ . . . . .  et}. For  c in 

Z_,[G], define L = {i; bt = c} and let N, be the G-submodu le  of Z2[G]'  gener-  

ated by {ei ; i ~ L }. If L is non-empty ,  pick an e lement  ic in it. Then  the e lements  

Y.~ic ei and e,, j #  ic, j E L form a basis for  No. 

Let  Ni be the G-submodu le  of Z2[G] t genera ted  by the e lements  X~1, e~ for c 

in Z2[G], let N2 be the G- submodu le  genera ted  by the e lements  {e~ ; j #  ic for  all 

c in Z2[G]}. Then  Z2[G] = Nt @ N2, a E N1, N2 is free of rank _--- ! - IZ:[G]I  = 

l - 2 I°1. 

For  f > 1, suppose that  we have found G-submodules  N[, N~ of Z2[G] t such 

that  Z_,[G] t =  N [ @ N ~ ,  at . . . . .  a t_ ,E  N~ and N~ is a free Z2[G]-module  of 

rank _-> l - (f  - 1)2 I°1. Let  at = b, + b2 where  bt E N~, b2 ~ N ' .  By the case f = 1, 

we can then find G-submodules  Mr, N2 of N~' such that b2 E Mr, Mt ~ N2 = N~ 

and N2 is a free Z2[G]-module  of r a n k > l  - ( f - 1 ) 2 1 ° 1 - 2  I°l= l - f 2  I°l. Take  

N, = N~ ~) M,. 

(2.7) LEMMA. Let G be a finite group, g, . . . . .  gr, h, . . . . .  h, elements of G, 

l = f  +e2  I°l. Then for all al . . . . .  a, in Z2[G]',  we can find bt . . . . .  b I in Z2[G] '  

such that in the group Z2[G] t >~ G 

((b,, g,) . . . . .  (br, gr)) fq ((at ,  h,)  . . . . .  (a, ,  h,)) = (1). 

PROOF. Use L e m m a  2.6 to find G-submodules  N, and N2 of Z2[G] ~ such that  

(1) Z : [G] '  = N, O N2, 

(2) ai . . . . .  a. E N,, 

(3) 5/2 is free of r a n k / .  

Let  {e, . . . . .  el} be a basis for  5/2 and let b~ be the e lement  (0, e~) of N, E) 5/2 - 

N, x 5/2, for  i = 1 . . . . .  [. Let  w(X,  . . . .  , Xt)  be a word in X, . . . . .  X~ and suppose 

that  

w ((0, e,, gl) . . . .  , (0, et, gr)) = (0, b, g ) ~  ((at, 0, hi) . . . . .  (a,, 0, h,)) 

in Z : [G] '  >~ G ~ (N] x 5/2) >~ G. Then  b = 0. 
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Placing ourselves in the subgroup N2 >~ G of (N, x N2)>q G it therefore 

suffices to prove that if w( (e ,  g,) . . . . .  (er, &)) = (0, g) then g = 1. Because the 

order of each (e,, g~) is finite, we can assume that w(X,  . . . . .  Xr) is of the form 

a l . I  a2.1 a[,I a l . 2  a2.2 • X ~ [ . 2  * • • a l  r a 2 r  X,  X.. " "  Xr X ,  X2 "" X ,  X2 " "  X~ r" 

where the a,.~ are positive integers. 

We now view Z.[G]  ~ ~ G as (Z2[G] xZ2[G]  x . - .  x Z 2 [ G ] ) ~  G, and we look 

at the ith coordinate of w((e, ,g , )  . . . . .  (er,&)) for 1 =< i _---[. We then get: 

41 I I I  a~  I a f t  a l  ¢ - I  4 2 ,  a[.r 
( 1 ) ( l + g , + . . . + g , ) g f . . . g t + . . . + ( l + g , + . . . + g ~  ) g 2 " ' g t  = 0 ,  

4 ~  1 - |  a ~  I a f t  a 2 . r - - 1  43.r O],r 
(2) ( l + g , + . - - + g . , ) g f . . . g r + . . . + ( l + g 2 + . . . + g 2  )g3 " " g ,  = 0 ,  

a L I - - I  41 .2  • • o f  r 
([) ( l + & + " ' + g t  )g, • g r + . . . + ( l + & + . . . + g ~  r' ' ) = 0 .  

We now multiply the equation (i) on the left by (1 -g~)  and get (we are in 

characteristic 2): 

a l . i  a 2 . t  a f t  ( r )  ( l + g , ) g 2  " ' g r  + "  

(2') 

(f') 

a2.1 a3.1 a f t  
(1 + g2 )g3 " ' "  gr" + ' "  

(1+ 4, 4~.~... o,., gr )g, gl + ' "  

• + g~ ' ) g 2  ' gr = 0, 
+ ( 1  a,. 4 2 , . . .  o .  

• +g2 )g3- ""g~ = 0 ,  + (1 42, 4,, 4 .  

• + (1 + g T " ) =  O. 

• " • • a f  .r 
For 1 < i _-< [, 1 _-< j _-< r the term g~'.  gt occurs exactly twice in this system: 

a i - i . j  al.j a~,r 
once in the summand (1+ gi-, )gi " " g ~  of equation ( ( i - 1 ) ' ) ,  once in the 

aLi a i + 1 4  a/% a/- r "'" +g~ )g, " "gt i f i = f , ] < r o r  s u m m a n d ( l + g ~  )g~+~ gf" i f i < f o r ( 1  4, 4,.j+, . 

( l+g~r ' )  if i = l ,  j = •  of equation (i'). Also if i = l ,  l < j - < •  the term 
• a L r  

g ~ ' " ' " g l  occurs exactly twice in this system: once in the summand 
(1 + ~'J z.j rJ-~. ~.J r, g~ )g2 "'" g{'" of equation (1'), once in the summand (1 + gr )g, "" " gr of 

equation (f'). 

Adding up the equations (1') through (f'), we therefore get 1 + g~'" 4,.. " " g r  =0 ,  

i.e. g = l .  

COROLLARY. Let K be a hilbertian field, L a finite Galois extension of K and 

o', . . . . .  tre, r , , . . . ,  % in GaI(L/K) .  We can then find a finite Galois extension M o[ 

K which contains L, and extensions t ry , . . . ,  or', r~ . . . .  , r~ o[tr~ . . . . .  tr,, r~ . . . .  , % to 

M such that 

(crl . . . . .  ~r;) n (r', . . . . .  r~) = (1). 

PROOF. By (1.6), we can find a Galois extension M of K which contains L 

and such that the following diagram commutes: 
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~ GaI(M/K) 

l resL 

Zz[G]" >4 G > GaI(L/K)= G 

where s is some group isomorphism and p is the natural projection. Extend 

~', . . . . .  ~'r in such a way that 0"; . . . .  , ~-[) _C 0 >a G. Let {e, . . . . .  e,} be the natural 

basis of Z2[G] ~ and let tr; = (e, o-j). Then by the Lemma, 

<~i  . . . . .  ~:> n (~ i  . . . .  , ~ )  = (1). 

This corollary gives an affirmative answer to Problem 7 in [4] and can then be 

used to prove one of Jarden's results, that if K is hilbertian, then for a.a. #, "~ in 
G ( K )  "+t, (#) n (?) = (1). 

(2.8) THEOREM. Let K be a hilbertian field, # in G(K)',  f >- 1. Then for almost 
all e in G(Ky,  (#) t') (~?) = (1). 

PROOF. Let w, (X, . . . . .  Xt), i < to be an enumeration of all the words in 

X, . . . . .  X,. 
Let T~ = {? E O(Kf; wi(~)~ (#)}. We claim that /~(T~)= I. Pick n suffi- 

ciently large so that one can find in S. elements g, . . . . .  gt such that 

w~ (g , , . . . ,  gt) ~ 1. By (1.6) we can now find finite Galois extensions N, C M, of K 

such that the following diagram commutes: 

Gal(M,/K) r""' GaI(N, IK) 

l L 
p 

z 2 [ s . l ' ~  s .  , s .  

where p is the natural projection, the vertical arrows are group isomorphisms 

and l = f + e2 l°l. By Lemma 2.8, we can therefore find g ; , . . . ,  g~ in Z2[S. ]' >~ S, 

such that p(g'i) = gi and w, ( g ; , . . . ,  g~) ~ (# IM,). We now iterate this construction 

to obtain a sequence Mj, j < to of Galois extensions of K, elements g~ in 

GaI (Mj /Ky such that 

(1) The Mj are linearly independent over K. 

(2) [Mj : r ]  = [M, : K  I. 
(3) w, (g;) ~ (# I~)- 

By Lemma 1.1,/z (T~) = 1. Let T = I"),<,~ T~. Then F(T)  = 1 and any element ? 

in T satisfies (#) tq (~) = (1). 
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